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Abstract
We review the random matrix description of electron transport through open
quantum dots, subject to time-dependent perturbations. All characteristics of
the current linear in the bias can be expressed in terms of the scattering matrix,
calculated for a time-dependent Hamiltonian. Assuming that the Hamiltonian
belongs to a Gaussian ensemble of random matrices, we investigate various
statistical properties of the direct current in the ensemble. Particularly, even at
zero bias the time-dependent perturbation induces current, called photovoltaic
current. We discuss dependence of the photovoltaic current and its noise
on the frequency and the strength of the perturbation. We also describe the
effect of time-dependent perturbation on the weak localization correction to
the conductance and on conductance fluctuations.

PACS numbers: 73.23.Ad, 72.15.Rn, 72.70.+m

1. Introduction

A quantum dot is a small disordered or irregularly shaped conductor, connected to leads [1]
(see figure 1). Exact values of the conductance of a quantum dot are determined by electron
wave functions in the system and are hard to calculate exactly for arbitrary configurations of
the dot. Moreover, the conductance changes significantly even for tiny changes in the position
of impurities or the boundary of the dot. Due to extreme sensitivity of the conductance on
many parameters, the statistical description of the conductance is more appropriate [2–10].
The random fluctuations of the conductance from sample to sample of non-interacting systems
are universal. The universality [11, 12] means that the conductance statistics can be described
by universal functions, which are independent from the shape of the dot or the details of the
disordered potential. Particularly, the variance of the conductance varg is of the order G2

0 and
is nearly independent from the sample geometry (G0 = e2/πh̄ is the quantum of conductance
for spin degenerate electrons). The other universal quantity is the weak localization correction
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to the conductance, defined as the difference of average values of the conductance over
orthogonal (zero magnetic field) and unitary (strong magnetic field) ensembles. The weak
localization correction to the conductance is also of the order of G0 [13–19].

A common description of electron transport through quantum dots is based on the
Landauer formalism [20–23], when the transport characteristics of the system are described
in terms of the scattering amplitudes between different conducting channels in the leads.
There are several approaches for statistical description of electron transport. One approach is
based on a diagram technique developed for disordered bulk metals [24], when the scattering
amplitudes are represented in terms of electron Green functions [4, 25–27].

Alternative approaches are based on the description of the system by random matrices,
when either an exact scattering matrix is replaced by a random unitary matrix, or an exact
Hamiltonian is replaced by a random Hermitian matrix. In the first case, the unitary matrix is
taken from Dyson’s circular ensemble of uniformly distributed random matrices [18, 19, 28]. In
the Hamiltonian approach, the Hermitian matrix belongs to an ensemble of random matrices
[29] with the Gaussian distribution of its matrix elements [30, 31]. The equivalence for
statistical description of electron transport by both random matrix approaches was shown in
[31–33].

Although the random matrix approach is not based on microscopic description of electron
system, their correspondence to microscopic problem has been proven for disordered metal
grains [34–36]. The validity of such random matrix description of chaotic ballistic systems
was addressed in [12, 37, 38].

We imply the following realization of the system (see figure 1(a)). Negative voltages
applied to the gates (black areas) confine electrons to a small region (light grey), forming a
quantum dot. Electrons in the dot are connected to the electron reservoirs by narrow leads.
Electric current that flows through the dot can be measured as a function of the voltage bias V

between the reservoirs and the amplitudes of ac gate voltages V1,2(t). Particularly, the current
linear in bias V is determined by the conductance of the dot. Changing the magnetic field or
shape of the dot one can obtain different realizations of the quantum dot and experimentally
study statistics of the quantum corrections to the conductance.

The quantum corrections to the conductance are commonly characterized by the weak
localization and the variance of conductance fluctuations. As any other quantum interference
phenomena, they are very sensitive to inelastic processes, commonly referred to as dephasing
[39]. A phenomenological description of the effect of dephasing on electron transport through
open quantum dots was developed in [40–42]. The dephasing rate due to electron–electron
interaction in quantum dots was estimated in [43, 44]. Another possible source of dephasing
is a time-dependent perturbation, such as a microwave radiation or periodic deformation. In
this case the Hamiltonian of the system can be considered as a time-dependent random matrix
[45–47], and all transport quantities can be calculated as a function of various parameters (e.g.
strength and frequency) of the time-dependent perturbation. The scattering matrix description
of the system subject to time-dependent perturbation was developed in energy representation by
Büttiker, Thomas and Pretrein in [48, 49]. In this case the scattering matrix describes processes
when electron scattering between different channels in the leads is accompanied by the change
of electron energy. Alternatively, the analysis of the effect of time-dependent perturbation on
the conductance can be carried out in time representation, see [45–47, 50, 51]. In general,
both the weak localization correction to the conductance and the variance of conductance
fluctuations are suppressed by time-dependent perturbation. The suppression of the quantum
corrections to the conductance by microwave radiation was observed experimentally in [10].

Time-dependent perturbation of quantum dots not only suppresses quantum corrections
to the conductance, but also produces electric current through the system even at zero bias.
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Figure 1. (a) Schematic picture of the experimental setup. Light grey colour shows the region
available for free electron motion, while the dark grey colour shows the region forbidden for
electrons due to electrostatic repulsion from the gates (shown in black) with applied negative
voltages. A finite bias V is applied between the upper and lower (in the text refereed to as left
and right) reservoirs. Oscillating voltages V1,2(t) applied to the gates produce time-dependent
perturbation of the electron system. (b) Contour plot represents time evolution of gate voltages
V1,2(t).

This effect is related to the charge pumping, which occurs in systems with large tunnel barriers
[52–55]. If the conductance of the system is very small, the electric current is quantized in
units of eω/2π , where 2π/ω is the period of the pump. At finite conductance, a countercurrent
reduces the pumped current and thus violate the quantization of electric current [56]. For an
open quantum dot, the countercurrent nearly compensates the pumped current and the current
is no longer quantized.

In the low-frequency limit, the magnitude of the pumped current is determined entirely
by the evolution of the system in the parameter space, see figure 1(b), under time-dependent
perturbations [57–60]. As frequency increases, the parametric description becomes insufficient
and requires full analysis of electron dynamics in time-dependent fields [61, 47]. The analysis
of how the adiabatic description breaks down at finite frequency can also be found in [62, 63].
We note that the charge pumping through an open quantum dot is a manifestation of the
photovoltaic effect, which occurs in systems without inversion centre [64]. The photovoltaic
effect was previously considered by Falko and Khmelnitskii [65] in mesoscopic microjunctions
and by Kravtsov, Aronov and Yudson [66, 67] in normal metal rings.

It turns out [61] that the photovoltaic current is sensitive to the actual electron distribution
function in the dot. Time-dependent perturbations may broaden the distribution function,
resulting in heating. This broadening of the electron distribution occurs as a result of the
electron diffusion in the energy space. The effect of time-dependent perturbations on electron
distribution function becomes even more interesting in closed systems, when the energy
diffusion acquires quantum interference corrections. The latter leads to a dynamic localization
[68] of the electrons in energy space [69, 70].

Photovoltaic current fluctuates not only with respect to different realizations of the
quantum dot, but also for a given realization due to quantum and thermal fluctuations.
Such fluctuations are called current noise and are described by the fluctuations of the charge
transported through the dot in a certain number of perturbation cycles. The statistics of such
charge fluctuations was studied in [71–76] for temperatures T and pumping frequencies ω

much smaller than the inverse dwell time γesc (escape rate) of electrons from the quantum
dot. Particularly, [71, 72] addressed the full counting statistics at temperatures T � ω (we
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use h̄ = 1 and the Boltsmann constant kB = 1). The mean square charge fluctuations for
ω, T � γesc (but for arbitrary relation between ω and T) were considered in [76]. The variance
of the photovoltaic current for arbitrary relation between the temperature T, the frequency ω,
the escape rate γesc and the strength of the perturbation was calculated in [77].

Experiments [78–80] were performed to detect the photovoltaic current in various
mesoscopic systems [78, 79], including open quantum dots [80] in the adiabatic regime. The
observed magnetic field symmetry and the amplitude of the current indicate that the measured
current was likely related to the ac rectification [81–83]. A more detailed analysis of the
zero-bias current in different regimes of microwave radiation shows that in some instances the
photovoltaic current, and not the rectification current, was observed [82, 83].

In this paper we focus on the random matrix description of electron transport through
open quantum dots in the limit of the large number of open channels Nch connecting the
dot to the leads. This condition allows us to neglect the electron–electron interaction that
gives corrections of the 1

/
N2

ch order (see [84]). The same condition permits the use of a
diagrammatic technique, similar to that described in [24], to calculate ensemble averaging.
We assume that the electron dynamics in the dot is fully chaotic and disregard classical
fluctuations of the conductance [26]. We emphasize that the random matrix description is
applicable for sufficiently small quantum dots, when the Thouless energy ET = 1/τcross is
much greater than all other energy scales of the problem, such as the frequency ω of the
perturbation or the temperature T (τcross is the electron crossing time of the dot). Larger
systems (ET � ω, T ) can be treated by methods developed for bulk conductors [39] (see e.g.
[50]). We note that the derivation of the results will be performed within the Hamiltonian
formalism, following [45, 46, 61], but the same results were derived within scattering matrix
formalism in [47].

2. Scattering matrix formulation of transport through open quantum dots

2.1. Model

The Hamiltonian of the system is

Ĥ = Ĥd + Ĥld + Ĥl. (1)

We choose the basis for electron wave functions in the dot, so that the coupling of states in the
dot to states in the leads can be written as

Ĥ ld =
∑
α,n,k

(
Wnαψ †

α(k)ψn + h.c.
)
, Wnα =

{
T , if n = α � Nch,

0, otherwise.
(2)

Here ψn and ψα(k) are the annihilation operators of electrons in the dot and the leads,
respectively. Index n enumerates electron states in the dot: n = 1, . . . ,M , with M → ∞.
Index α labels channels in the leads, with 1 � α � Nl for the Nl channels in the left lead
and with Nl + 1 � α � Nch for the Nr channels in the right lead, Nch = Nl + Nr. Coupling
constants T are defined below in equation (43). The Hamiltonian for electron states in the
leads near the Fermi surface can be linearized:

Ĥ l = vF

∑
α,k

kψ †
α(k)ψα(k), (3)

where the continuous variable k denotes electron momenta in the leads, vF = (2πν)−1 is the
Fermi velocity and ν is the density of states per channel at the Fermi surface.
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Finally, Ĥd is the Hamiltonian of the electrons in the dot, determined by the M × M

matrix Ĥ and the electrostatic energy of N electrons:

Hd = ψ†

[
Ĥ +

∑
i

(V̂ i + 1̂Zi)ϕi(t)

]
ψ + EcN

2. (4)

Matrix Ĥ describes the time-independent part of the electron Hamiltonian, and the time-
dependent component of the Hamiltonian is represented in terms of the traceless matrices V̂ i

and the diagonal matrix 1̂Zi . In the setup shown in figure 1, the time-dependent perturbation
is generated by the gate voltages V1,2(t). The perturbation is linear in small amplitude of
oscillating voltages V1,2(t), and the time evolution of the perturbation characterized by the
dimensionless functions ϕi(t) ∝ Vi(t). The second term in equation (4) represents the largest
in 1/M contribution from the electron–electron interaction with Ec being the charging energy
of the dot, and N = ∑

n ψ
†
nψn being the operator of the electron number in the dot. The

status of this approximation was discussed in detail in [85]. For an open quantum dot with the
large number of open channels Nch � 1 the interaction term can be treated within mean field
approximation, and the Hamiltonian Ĥd in equation (4) can be further simplified:

Hd = ψ†

[
Ĥ +

∑
i

V̂ iϕi(t) + 1̂eVd(t)

]
ψ, eVd(t) =

∑
i

Ziϕi(t) + 2Ec〈N〉. (5)

Here we introduced the electric potential Vd(t) linear in the quantum mechanical average 〈N〉
of the electron number N in the dot. Corrections to this mean field treatment were calculated
in [84, 86, 87].

To determine the electric potential Vd(t) in the dot, we have to define the quantum
mechanical average 〈N〉 of the electron number N in the dot. In each particular moment
of time the electron number 〈N〉 is not constant and its time evolution is described by the
discontinuity equation eṄ(t) = Ir(t) + Il(t). We estimate Vd(t) to the lowest order in
1/Nch � 1, and use NlG0(NrG0) for the conductance of the left (right) contact, G0 = e2/π

is the quantum conductance. Then, 〈N(t)〉 satisfies the following equation:

d〈N(t)〉
dt

= −γesc〈N(t)〉 +
eNl

π
(Vl − Vd(t)) +

eNr

π
(Vr − Vd(t)). (6)

The first term in equation (6) is a diffusion term, describing the electron escape from the dot
with rate γesc, where γ −1

esc is the mean time for an electron to escape the dot through one of
the leads; below we define γesc in terms of microscopic parameters of the system. The last
two terms in equation (6) represent electron flux from the dot due to the voltage difference
Vl,(r) − Vd(t) across the contact of the left (right) reservoir and the dot. A discussion of the
charge dynamics in quantum dots can be also found in [88].

Combining equation (6) with the expression for Vd(t) from equation (5), we obtain

Vd(t) = 2EcNch

2EcNch + πγesc

NlVl + NrVr

Nch
+

γesc + ∂t

γesc + 2EcNch/π + ∂t

∑
Ziϕi(t). (7)

The characteristic energy scale governing the dynamics of the charge is EcNch/2π ∝
G0Nch/Cd, Cd is the dot capacitance. Usually, this scale is of the order of the Thouless
energy ET and significantly exceeds the electron escape rate γesc. Therefore, we consider the
limit, when both γesc and the frequency of the external field ω are much smaller than Ec, and
use the following equation for the electrostatic potential of the dot:

Vd(t) ≡ Vd = NlVl + NrVr

Nch
. (8)
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We conclude that the time-dependent perturbation equation (4) can be chosen traceless, Zi = 0,
and the electric potential in the middle dot is determined by the potentials of the left and right
reservoirs.

2.2. Electric current

The current through the dot is given in terms of the scattering matrices Ŝ(t, t ′) by the following
expression:

〈I 〉 = e

∫ τo

0

dt

τo

∫
dt1 dt2 tr{
̂[Ŝ(t, t1)f̂ (t1 − t2)Ŝ†(t2, t) − f̂ (+0)]}. (9)

The derivation of equation (9) can be found in [47, 49, 61] (see also appendix A). Here 〈I 〉
stands for the quantum mechanical and thermodynamic averages of the current operator (no
ensemble averaging!) and f̂ (t) represents the electron distribution function in the leads in time
representation. We consider the case when electrons in the leads are in thermal equilibrium
at temperature T, but the different voltages Vl and Vr are applied to the left and right electron
reservoirs. Then, the matrix f̂ (t) is diagonal fαα(t) = fl(r)(t), if the channel α belongs to the
left (right) lead. The function fl(r)(t) is the Fourier transform of the Fermi–Dirac distribution
function:

fl(r)(τ ) = eieVl(r)τ f (τ ); f (τ) =
∫ +∞

−∞

dω

2π
eiωτ

{
1

ω/T + 1
− 1

2

}
= iT

2 sinh πT τ
. (10)

Here the traceless diagonal matrix 
̂ is introduced


αβ = δαβ




+
Nr

Nch
, if 1 � α � Nl,

− Nl

Nch
, if Nl < α � Nch,

(11)

and the scattering matrix Ŝ(t, t ′),

Sαβ(t, t ′) = eieVd(t−t ′)[δαβδ(t − t ′) − 2π iνW †
αnG

R
nm(t, t ′)Wmβ

]
, (12)

is defined in terms of the Green function GR
nm(t, t ′) that satisfies the following equation:(

i
∂

∂t
− Ĥ −

∑
i

V̂ iϕi(t) + iπνŴŴ †

)
Ĝ(R)(t, t ′) = δ(t − t ′), (13)

where the matrices Ĥ , V̂ i and Ŵ were introduced earlier (see equations (2) and (5)). The
diagonal component eVd of the electron Hamiltonian in the dot is removed from the expression
for the electron Green function GR

nm(t, t ′) by the gauge transformation, represented by the
exponential factor in equation (12).

To the linear order in voltage across the dot V = Vl − Vr, the dc electric current has the
form

〈I 〉 = Iph + gV. (14)

The first term represents the photovoltaic current, which flows through the dot even at zero
bias. The second term is linear in voltage V with factor g being the dc conductance of the dot
in the presence of time-dependent perturbations V̂ i . The linear in V contribution to the current
in general may come from two sources: (i) the non-equilibrium distribution of electrons in
the leads and (ii) change in the photovoltaic current Iph due to change in the configuration of
the electron wave functions when the bias is applied. Due to the electro-neutrality condition
equation (7), the voltages Vl, Vd and Vd enter only as exponential factors to the expression
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for the electric current equation (9), and do not actually affect the structure of electron wave
functions in the dot. Therefore, only the non-equilibrium current contributes to the linear in
V term.

The dc conductance g of the dot can be represented in the form

g = gcl + G0

∫ τo

0

dt

τo

∫ +∞

−∞
dt1 dt2F(t1 − t2) tr {Ŝ(t, t1)
̂S†(t2, t)
̂}, gcl = G0

NlNr

Nch
.

(15)

Here gcl is the classical conductance of the dot, τo is the observation time, G0 = e2/πh̄ is the
quantum conductance for doubly degenerate electrons in spin states and F(x) is the Fourier
transform of the derivative of electron distribution function:

F(t) = πT t

sinh πT t
. (16)

The expression for the photovoltaic current Iph can be obtained from equation (9) by
taking Vl = Vr. Using the Wigner transform for the scattering matrix

Ŝ(t, t ′) =
∫

Ŝ t+t ′
2

(ε) eiε(t−t ′) dε

2π
, (17)

we write

Iph = e

∫ τo

0

dt

τo

∫
dτ

∫
dε

2π
eiετ f (τ ) tr

{

̂Ŝ t

2 + τ
4
(ε)Ŝ†

t
2 − τ

4
(ε)

}
. (18)

For slow perturbations ϕi with frequencies ωi smaller than temperature T or the inverse
eigenvalues of the time delay matrix [89]

R̂ε(ε, t) = [∂εŜt (ε)]Ŝ†
t (ε), (19)

we can expand the scattering matrices in equation (18) in τ and obtain

Iph = e

∫ τo

0

dt

τo

∫
dε

2π

1

cosh2 ε/2T
tr

{

̂

(
∂St (ε)

∂t
S†

t (ε) − St (ε)
∂S†

t (ε)

∂t

)}
. (20)

Here, the scattering matrix in the Wigner representation is a function of the perturbation itself
and its time derivatives: Ŝt (ε) = Ŝ(ε, ϕi(t), ϕ̇i(t), . . .) because the Green function Ĝ(R)(ε, t)

is a solution of the equation:

εĜ(ε, t) − 1

2
{Ĥ − iπνŴŴ †; Ĝ(R)(ε, t)}

+
∞∑

k=0

∑
i

1

2(2i)kk!

dkϕi(t)

dk

(
V̂ i

∂kĜ(ε, t)

∂εk
+ (−1)k

∂kĜ(ε, t)

∂εk
V̂ i

)
= 1, (21)

with {Â; B̂} = ÂB̂ + B̂Â. In the adiabatic approximation the derivatives dkϕi(t)/dt k can be
neglected and the scattering matrix is determined by parameters ϕi(t), Ŝt (ε) = Ŝ(ε, ϕi(t))

(see [57]):

Iph = e

Tp

∮
dϕi

∫
tr{
̂ Im R̂i (ε, ϕ)}

cosh2 ε/2T

dε

2π
, R̂i (ε, ϕ) = ∂Ŝ(ε, ϕ)

∂ϕi

Ŝ†(ε, ϕ). (22)

The integral in equation (22) runs over the loop in the parameter space ϕi , and Tp is the time
for a system to complete this loop. Particularly, for the perturbation characterized by two
parameters

ϕ1(t) = X1 cos(ωt), ϕ2(t) = X2 cos(ωt + φ) (23)
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the photovoltaic current is given by [57]

Iph = eω

2π2

∫
A

dϕ1 dϕ2 Im tr

{

̂

∂Ŝ
∂ϕ1

∂Ŝ†

∂ϕ2

}
, (24)

where the integral runs over the inner part of the ellipse, defined by equation (23). At finite
frequencies, but still ωi � T , equation (20) is still applicable and can be rewritten in the form
similar to equation (22), if the parameter space ϕi is extended to the phase space, containing
time derivatives of ϕi(t) as well.

With the help of the equations of motion equation (13), the expression for the photovoltaic
current can be rewritten in terms of the Green functions ĜR,A(t, t ′):

Iph = 2 eiπν

∫ τo

0

dt

τo

∫∫
dt1 dt2F

ph
i (t1, t2)

∑
i

tr{Ŵ †ĜR(t, t1)V̂ iĜ
A(t2, t)Ŵ 
̂}, (25)

which is more convenient in some calculations. Here the function,

F
ph
i (t1 − t2) = [ϕi(t1) − ϕi(t2)]f (t1 − t2), (26)

takes into account the probability of electron transitions due to the perturbation V̂ ϕi(t) for the
equilibrium electron distribution in the dot f (t). We note that taking higher order terms in V̂ i

in ĜR,A results in a new electron distribution function in the dot:

V̂ iF
ph
i (t − t ′) → ĜR(t, t1)V̂ iF

ph
i (t1 − t2)Ĝ

A(t2, t
′). (27)

The effective electron distribution function has a shape different from the Fermi distribution
function (see section 5).

We note that due to tr 
̂ = 0 the expression for the conductance cannot be represented
in terms of modified distribution function. As a result (see [46]), conductance fluctuations
are characterized by the electron temperature in the reservoirs rather than by the electron
temperature in the dot. This statement was further investigated in [51], where the effect of
time-dependent perturbation on two possible definitions of the conductance was studied. It
was shown that the Landauer conductance, defined as the linear response to the bias between
the reservoirs and given by equation (15), is indeed characterized by the electron distribution
function in the leads. In other geometries one can measure the linear response of electric
current to the internal perturbation of the mesoscopic system by the dc electric field. Such
response, called the Kubo conductance, is sensitive to the actual distribution function of
electrons in the mesoscopic system.

2.3. Current noise

The current correlation function S represents fluctuations of the charge Q = ∫ τo

0 I (t) dt

transported through the dot over the observation time interval τo

S = 〈Q2〉 − 〈Q〉2

τo
=
∫ τo

0
(〈I (t)I (t ′)〉 − 〈I (t)〉〈I (t ′)〉)dt dt ′

τo
. (28)

Expression for S in terms of the scattering matrices Ŝ can be derived in a similar way to the
derivation of equation (9) for current, and is outlined in appendix B. For arbitrary distribution
function fαβ(t) = δαβfα(t) in the leads the current correlation function S has the form
(δt,t ′ = δ(t − t ′)):

S =
∫ τo

0
dt dt ′

∫
dt1 dt2 dt ′1 dt ′2 tr

{(
Ŝ†(t2, t)
̂Ŝ(t, t ′1) − 
̂δt2,t δt,t ′1

)
f̂ (t ′1 − t ′2)

×(
Ŝ†(t ′2, t

′)
̂Ŝ(t ′, t1) − 
̂δt ′2,t ′δt ′,t1
)
(1̂δt1,t2 − f̂ (t1 − t2))

}
. (29)
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Below we consider the case of zero bias across the dot, so that fα(t) ≡ f (t) (see
equation (10). We also assume that the temperature of the system T is finite and T τo � 1.
(The limit T = 0 has some interesting properties and was discussed in [72, 71]). Then, S can
be divided into two parts:

S = SNJ + SP. (30)

Here, the second term SP is chosen in such a way that in the absence of time-dependent
perturbations this term vanishes (SP = 0, see equation (32) below), and only the first term
remains. The first term describes the current noise due to thermal fluctuations of electrons in
the leads at temperature T and is known as the Nyquist–Johnson noise [90, 91].

The Nyquist–Johnson component of the noise can be written as

SNJ = 2gclT −
∫ τo

0

dt dt ′

τo

∫
dt1 dt2f (t1 − t ′)f̃ (t ′ − t2) tr{
̂Ŝ(t, t1)
̂Ŝ†(t2, t)}, (31)

where f̃ (t) = δ(t) − f (t). The first term in equation (31) represents the noise of a classical
resistor with resistance 1/gcl. The second term in equation (31) describes the contribution to the
current noise from the quantum mechanical corrections to the conductivity (cf equation (15)).
In the absence of time-dependent perturbations, the second term represents the quantum
correction to the conductance, so that the noise correlator has the form SNJ = 2gT , where g

is the sample-specific conductance of the dot (see equation (15)).
The external field changes the conductance of the dot (see section 4). Consequently, we

can expect that the Nyquist–Johnson contribution to the current noise is also modified due to
the external field. In particular, the ensemble average SNJ and fluctuations of SNJ with respect
to different dot realizations are suppressed by time-dependent perturbation.

The second term, SP, in equation (30) represents the noise of the photovoltaic current
equation (18) and has the following form in terms of the scattering matrix Ŝ(t, t ′):

SP = e2
∫ τo

0

dt dt ′

τo

∫
dt1 dt2 dt ′1 dt ′2 f (t1 − t2) f̃ (t ′1 − t ′2)

× tr
{
Ŝ(t ′2, t)
̂Ŝ†(t, t1)Ŝ(t2, t

′)
̂Ŝ†(t ′, t ′1) − 
2δt ′2,t δt,t1δt2,t ′δt ′,t ′1

}
. (32)

To discuss the noise of the photovoltaic current in more detail, we consider the adiabatic limit,
when the eigenvalues of the time-delay matrix equation (19) are shorter than both 1/T and
1/ωi , (ωi is the frequency of external perturbation V̂ i). The ensemble average value of SP for
arbitrary strength and frequency of the perturbations was investigated in [77, 92] and is briefly
discussed in the end of section 5.

In the adiabatic limit only electrons close to the Fermi energy contribute to the current.
Thus, we can neglect energy dependence of the scattering matrix Ŝ(ε, t) in the Wigner
representation equation (17) and substitute Ŝ(t, t ′) = Ŝt (ε = 0)δt,t ′ into equation (32):

SP = e2
∫ τo

0

dt dt ′

τo
tr
{

̂2 − Ŝ†

t (0)
̂Ŝt (0)Ŝ†
t ′(0)
̂Ŝt ′(0)

}
f (t − t ′)f̃ (t − t ′). (33)

We observe that the temporal correlations in the current survive on time scales comparable with
the observation time τo at low temperatures T τo � 1. In this case the full counting statistics
is non-trivial and higher moments of the current should be investigated (see [71, 72] for more
detail). At finite temperature T, the temporal correlations of the current are suppressed on
time scale of the order of 1/T (see equation (10)), and the counting statistics of the current
becomes Gaussian and is described by the average value of the current Iph, equation (18), and
its noise SP, equation (32).
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Within a bilinear response to the perturbation equation (23) we obtain the following
expression for the noise:

SP = e2Fn(T , ω)
(
K11X

2
1 + K22X

2
2 + 2 cos φK12X1X2

)
. (34)

Here coefficients Kij are given by

Kij = tr{[
̂; R̂i][R̂j ; 
̂]} (35)

and the function Fn(T , ω) represents the probability of the absorption or emission of a
perturbation quantum with energy ω:

Fn =
∫

dε

4π

[
f
(
ε + 1

2ω
)
f̃
(
ε − 1

2ω
) − 2f (ε)f̃ (ε) + f

(
ε − 1

2h̄ω
)
f̃
(
ε + 1

2h̄ω
)]

= ω

2π

(
coth

ω

2T
− 2T

ω

)
. (36)

At low temperatures T � ω, but still T � 1/τo, Fn = ω/2π . As T increases, Fn decreases
Fn = ω2/T .

Above, we discussed the current noise in the situation when the bias across the dot is zero.
When a finite bias is applied, the noise acquires dependent on the bias contribution called
shot noise. It was shown [93] that the shot noise originate only due to quantum corrections
to electron transport, while the classical contribution to the transport does not lead to the
shot noise. Therefore, one can expect that a time-dependent perturbation suppresses shot
noise along with any other quantum interference characteristics of electron transport. Another
interesting effect of microwave radiation on the shot noise of open quantum dots was found
by Lamacraft in [94]. This effect results in cusps of the noise power when the bias eV is a
multiple of microwave frequency ω: eV = nω with integer n.

3. Ensemble of open quantum dots

The exact form of the Hamiltonian equation (5) for quantum dots depends on many microscopic
parameters of the system, such as the shape of the dot, position of impurities and is usually
too complicated for analysis. However, for many purposes the interesting question is what
the statistical properties of transport coefficients through a quantum dot, rather than the
corresponding values for each particular sample. To describe statistical properties of quantum
dots, a random matrix theory turns out to be a productive tool. The random matrix description
of quantum dots is based on the assumption that the Hamiltonian of the dot, equation (5), is
determined by M × M matrices Ĥ and V̂ i with Ĥ being a random realization of a Hermitian
matrix from the Gaussian ensemble [29]. The matrix elements Hnm(�) of matrices from this
ensemble in the presence of magnetic flux � through the dot are described by the following
correlators:

Hnm(�1)H
∗
n′m′(�2) = Mδ2

1

π2
[L(�1 − �2)δnn′δmm′ + L(�1 + �2)δmn′δnm′]. (37)

Here (· · ·) stands for the ensemble averaging, and δ1 is the mean level spacing of eigenvalues
of Ĥ . For small �� function L(��) can be estimated as L(��) = 1 − κ(��/�q)

2, where
κ is a non-universal, sample-specific constant of the order of unity, and �q = c/e is the flux
quantum [7, 95]. At �1,2 = 0, the matrix Ĥ (0) belongs to the orthogonal ensemble. As
�� increases, L(��) vanishes, and Ĥ (�) becomes a matrix from the unitary ensemble
when the second tern in equation (37) is equal to zero. The microscopic justification of the
random matrix description equation (37) can be found in [34–36] for disordered systems and in
[12, 37, 38] in ballistic chaotic systems.
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Matrices V̂ i can also be considered as Hermitian random matrices. Below we disregard the
fluctuations of the matrices V̂ i , and assume that V̂ i are real symmetric matrices, belonging to
a Gaussian orthogonal ensemble. In this case, we characterize perturbations V̂ i by parameters

Cij = π

M2δ1
tr V̂ i V̂ j . (38)

We remind that tr V̂ i = 0 (see equation (7)). The parameters Cij have the meaning of the
level velocities which characterizing the evolution of an energy level εn(ϕ) under the external
perturbation

∑
i V̂ iϕi(t) [96, 11]:

2δ1

π
Cij = ∂εν

∂ϕi

∂εν

∂ϕj

− ∂εν

∂ϕi

∂εν

∂ϕj

. (39)

Parameters Cij are also related to the transition rates of electrons under perturbation V̂ i .
Indeed, the transition rate γ11 due to perturbation V̂ 1 is determined by the Fermi golden rule:

γ11 =
∑
m

2π |V1;nm|2δ(εn − εm ± ω) ∼ |V1;nm|2
δ1

� C11

π
. (40)

The first equality sign follows from the Fermi golden rule, the second sign represents an
estimate of the characteristic value of the matrix elements |V1;nm|2 and the density of states
1/δ1, the last equation is the definition of C11 (cf equation (38)). If perturbations induce
uniform electric fields Ei in a quantum dot with typical length L, parameters Cij can be
estimated as Cij � e2EiEjL

2/ETh, where ETh ∼ Mδ1 is the Thouless energy.
Below we show that all statistical transport characteristics of quantum dots in the presence

of time-dependent perturbations are functions of parameters Cij . Thus, even though Cij are
free parameters, measurements of several transport characteristics [10, 82, 83] allow one to
eliminate the uncertainty of Cij .

For calculations of different correlation functions of transport parameters over the
ensemble of random Hamiltonians Ĥ , we use a diagrammatic technique, similar to one
developed for disordered metals (see [24]). In this section, we briefly discuss the basic
elements of this diagrammatic technique.

First, we calculate the ensemble averaged Green function ĜR,A(ε) in the absence of time-
dependent perturbations. The diagram equation in figure 2 reduces to the following algebraic
equation for the electron self-energy �(ε) = (

Mδ2
1/π

2
)

tr ĜR(ε):

�(ε) = Mδ2
1

π2

1

ε − �(ε) + i0
− Nch

Mδ3
1

π2

1

ε − �(ε) + i0

1

ε − �(ε) + iMδ1/π
. (41)

Solving equation (41), we find the ensemble average Green function ĜR(ε) = (ĜA(ε))∗ for
ε � Mδ1 in the form

GR
nm(ε) = −iδmn

π

Mδ1




1 +
Nch + i2πε/δ1

4M
, Nch < n � M,

1

2
, 1 � n � Nch.

(42)

In derivation of equations (41) and (42), we used the following values for factors T in
equation (2):

T =
√

Mδ1

π2ν
. (43)

This choice of T corresponds to a dot connected to the leads by reflectionless contacts, when
the ensemble averaged scattering matrix Sαβ is zero and Ŝ belongs to circular ensemble
(see [7]).
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= Hn′m′Hnm= Hn′m′Hnm=
1

ε + iπνŴŴ † ;

GR
nm(ε)

Σ(ε)

Σ(ε)

=

=

+

+

m m m

m

m

m′

nn

n

n n n

n′

Figure 2. Diagrams for the ensemble averaged electron Green function in the dot. The first line
of the figure introduces the bare Green function [ε + iπνŴŴ †]−1 and correlation function of the
matrix elements of the Hamiltonian Ĥ . The second line represents the Dyson-type equation for
the ensemble averaged Green function GR

nm(ε). The third line introduces the first two terms of the
self-energy �(ε), which is diagonal in index of electron states in the dot. The second term as well
as all other terms which contain intersections of dashed lines are small in parameter 1/M .

=

=

=

+

+

+

+

+

+

+

+

+

t+1

t+1

t+2

t+2

t−1

t−1

t−2

t−2

=
∑

i V̂iϕi(t)

(a)

(c)

(b)

Figure 3. The Dyson-type equations for the diffuson, equation (44), and the Cooperon,
equation (45), are shown in the first and second lines, respectively. The subscript ‘amp’ in
equations (44) and (45) emphasizes that the four Green functions at the terminals of the diffusion
and the Cooperon are omitted. All Green functions in these diagrams and diagrams in figures
below are ensemble average Green functions, introduced in the second line of figure 2.

We also introduce two other elements of the diagram technique used in calculations of
statistical properties of electron transport in the presence of time-dependent perturbations.
One element is called the diffusion D(t1, t2, τ ) and is defined by[
GR

nm;�1

(
t+
1 , t+

2

)
GA

mn;�2
(t−2 , t−1 )

]
amp

= 4M2δ2
1

π2
δ
(
t+
1 + +t−2 − t+

2 − t−1
)

×D�1−�2

(
t+
1 + t−1

2
,
t+
2 + t−2

2
, t+

1 − t+
2

)
(44)

(see figure 3(a)). The other element is called the Cooperon C(τ1, τ2, t) and is defined as[
GR

nm;�1

(
t+
1 , t+

2

)
GA

nm;�2
(t−1 , t−2 )

]
amp

= 4M2δ2
1

π2
δ
(
t+
1 + +t−2 − t+

2 − t−1
)

× C�1+�2

(
t+
1 − t−1 , t+

2 − t−2 ,
t+
1 + t−1

2

)
(45)

(see figure 3(b)). These two elements represent the ensemble average product of the
advanced and retarded electron Green functions in the dot, divided by the product
GR

nn;�1
GR

mm;�1
GA

nn;�2
GA

mm;�2
, the so-called amputated diagrams. The diffusion and the

Cooperon are given by the following expressions:

D��(t1, t2, τ ) = θ(t1 − t2) exp

(
−
∫ t1

t2

���(τ, t) dt

)
, (46)
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C��(τ1, τ2, t) = θ(τ1 − τ2) exp

(
−1

2

∫ τ1

τ2

���(τ, t) dτ

)
. (47)

Here we use the notation

���(τ, t) = γesc + γ (��) +
∑
ij

ϕ̃i(τ, t)Cij ϕ̃j (τ, t), (48)

γesc = Nchδ1

2π
, γ (��) = 2Mδ1

π
[1 − L], ϕ̃i(τ, t) = ϕi(t + τ/2) − ϕi(t − τ/2).

(49)

The first term in equation (48) is the electron escape rate from the dot and γ�� is the electron
dephasing rate due to the difference in magnetic flux ��. The last term in equation (48)
describes the effect of time-dependent field on the correlation functions equations (44) and (45)
of electron propagators. Equations (42), (46) and (47) are the building blocks of the diagrams,
which are studied below for different correlation functions of transport characteristics of open
quantum dots.

4. Effect of time-dependent perturbations on the conductance

4.1. Weak localization correction

Weak localization correction to the conductance of a quantum dot is given by the ensemble
average of the second term in equation (15). For the unitary ensemble weak localization
correction [97] is small as gcl

/
N2

ch � 1 and is beyond the accuracy of our calculations. In the
orthogonal ensemble the weak localization correction is gcl/Nch ∼ 1 [7]. We define the weak
localization correction to the conductance as the difference between the averaged values of
the conductance over orthogonal (� = 0) and unitary (� � �q) ensembles:

�gwl = (g)�=0 − (g)���q . (50)

In this subsection we describe the effect of time-dependent field on the weak localization
correction equation (50).

The weak localization correction is given by the diagram in figure 4 and can be calculated
from the following expression [45]:

�gwl = �g
(0)
wl

∫ 2π/ω

0

ω dt

π

∫ ∞

0
γesc dτC(τ,−τ, t), �g

(0)
wl = −G0

NlNr

N2
ch

. (51)

This equation gives the universal description of the effect of the time-dependent fields on
the weak localization correction. Below we will discuss different asymptotic regimes for the
case when the perturbation is described by only one harmonic function ϕ1(t) = cos ωt and
C11 = Cl.

In the absence of the time-dependent perturbation Cl ≡ 0, one obtains �gwl = �g
(0)
wl

[7, 98]. For weak external field Cl � γesc we find

�gwl

�g
(0)
wl

= 1 − πCl

γesc

ω2

ω2 + γ 2
esc

, (52)

where γesc is defined in equation (49). In this regime the correction is quadratic in the frequency
of slowly oscillating field, similar to the result for bulk metal system at ω smaller than the
dephasing rate 1/τφ . However, the frequency dependence saturates at large frequency. It is
different from the result for bulk systems [39], where a characteristic spatial scale shrinks as√

D/ω with D being the diffusion coefficient, whereas in a quantum dot this scale is determined
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= Ŵ Λ̂Ŵ †

Figure 4. The diagram for the calculation of the weak localization correction to the conductance.

by the size of the dot L. The random matrix description breaks down at ω ∼ D/L2 = ETh, ETh

is the Thouless energy.
In the opposite limit of strong external field Cl � γesc we consider separately the cases

of fast, ω � γesc, and slow, ω � γesc, oscillations. In the first case we have

�gwl

�g
(0)
wl

=
√

γesc

πCl
. (53)

The 1/
√

Cl power dependence of the quantum correction is similar to that for the bulk system.
Contrary to the bulk systems, the result does not depend on the frequency ω for the reason
mentioned above. In the case of slow field ω � γesc, but still Clω

2 � γ 3
esc (strong field) the

weak localization correction to the conductance is

�gwl

�g
(0)
wl

= �(1/6)

π�(5/6)

3

√
πγ 3

esc

9Clω2
. (54)

The power and frequency dependence of �gwl is again different from that in bulk disordered
metals, �(x) is the �-function.

4.2. Conductance fluctuations

Next we consider the fluctuations of the conductance g over ensemble of random Hamiltonians
Ĥ . We notice that the fluctuations in g originate only from the second term in equation (15),
since in the model of fully chaotic quantum dots with open channels the classical conductance
gcl does not fluctuate. We have for δg = g − gcl the following correlation function, which can
be derived [46] from the diagrams shown in figure 5:

δg�1δg�2 = g2
cl

N2
ch

γ 2
esc

∫ 2π/ω

0

ω2 dt dt ′

4π2

∫ ∞

0
dτF 2(τ )

∫ ∞

τ/2
dθ [K+(t, t ′, τ, θ) + K−(t, t ′, τ, θ)],

(55)
where the functions K±(t, t ′, τ, θ) are given by

K+(t, t ′, τ, θ) = D
(

t + t ′

2
,
t + t ′ + τ

2
− θ, t ′ − t

)
D
(

t + t ′

2
,
t + t ′ − τ

2
− θ, t − t ′

)
, (56)

K−(t, t ′, τ, θ) = C
(

t − t ′ + θ − τ

2
, t − t ′ − θ +

τ

2
,
t + t ′ − θ

2
+

τ

4

)

× C
(

t ′ − t + θ +
τ

2
, t ′ − t − θ − τ

2
,
t + t ′ − θ

2
− τ

4

)
. (57)

The two terms in equation (55) have different properties with respect to the magnetic flux
� through the dot. Although at � = 0 both terms survive, at finite magnetic field, |�1,2| ∼ �q,
only one of them remains: for �2 ≈ �1 the second term vanishes, and for �2 ≈ −�1 the first
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term vanishes. The values of the conductance correlation function at �2 = ±�1 characterize
the symmetry of the conductance with respect to magnetic field inversion. If conductance
is symmetric, δg�δg� = δg�δg−�. This equation is indeed valid in the absence of time-
dependent perturbations [22, 99]. As was shown in [46, 50], time-dependent perturbations
may suppress the symmetry of the conductance with respect to magnetic field inversion (see
e.g. equation (61) below).

In the presence of a single harmonic perturbation at frequency ω and with strength
C11 = Cl, we can write the conductance correlation function in the form

δg�1δg�2 = g2
cl

N2
ch

[
γ 2

esc

γ 2−
Q+

(
Cl

γ−
,

T

γ−
,

ω

γ−

)
+

γ 2
esc

γ 2
+

Q−
(

Cl

γ+
,

T

γ+
,

ω

γ+

)]
, (58)

where we used a shorthand γ± = γesc + γ (�1 ± �2) with γesc and γ (��) defined in
equation (49). At T = 0,�1,2 = 0, and in the absence of time-dependent perturbations
Q± = 1. Below we discuss the properties of the functions Q± in various regimes.

In the limit of high temperature, T � γesc, we obtain

Q±(x, y, z) ≈ π2

3y

1√
1 + 2x

. (59)

The equality between functions Q± means that the conductance is symmetric with respect to
magnetic field inversion. However, in low temperature limit, T � γ±, we obtain for strong
perturbation Cl � γesc

Q+(x, 0, z) ≈ 1

2
√

2x
, Q−(x, 0, z) ≈ 1

2x
. (60)

Equation (58) with Q± given by equation (60) shows an important signature of the effect
of time-dependent perturbations on the conductance—the violation of the Onsager symmetry:

δg�δg−�

δg�δg�

=
√

2γesc

Cl
, γ (2�) � γesc. (61)

This breakdown of the Onsager relation is a simple manifestation of lifting of the time reversal
symmetry in the system with time-dependent Hamiltonian.

In the limit of low frequency, ω � γesc, the conductance g can be represented as the result
of averaging of the conductance g({ϕi}) at stationary perturbation ϕi over one period 2π/ω:

g =
∫ 2π/ω

0
g({ϕi(t)})ω dt

2π
, (62)

where g({ϕi}) can be calculated according to equation (15) with the scattering matrix defined
by equations (12) and (13) at fixed values ϕi . Because g(ϕ) has magnetic field symmetry [22],
g is also symmetric with respect to inversion of magnetic field. Calculations of equation (55)
at ω � γesc give

Q±(x, y, 0) =
∫ 2π

0

dξ dζ

4π2

∫ ∞

0
F 2(ξ/γ∓)

exp(−(1 + 4x sin2 ξ/2 sin2 ζ/2)ξ)

1 + 4x sin2 ξ/2 sin2 ζ/2
dξ. (63)

This expression in the limit of high temperature T � γesc has the asymptote

Q±(x, y, 0) = π

3y
K(−4x), (64)

and at zero temperature Q±(x, 0, 0) is given by

Q±(x, 0, 0) = 1

π

E(−4x) + (1 + 4x)K(−4x)

1 + 4x
, (65)

where K(x) and E(x) are the elliptic integrals of the first and second kind, respectively.
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Figure 5. The diagrams for the calculation of the variance of conductance fluctuations.

Suppression of the conductance fluctuations by slow field ω � γesc (see equation (64)
and (65)) is the consequence of averaging of the stationary conductance g(ϕ) over different
configurations of the full Hamiltonian along the closed contour in parameter space (see
figure 1(b)). Thus, the observed dc conductance g, equation (62), is already partially averaged
over ensemble of random Hamiltonians Ĥ and its fluctuations are reduced. As the strength of
the perturbation Cl increases, more statistically independent configurations of Hamiltonian Ĥ

contribute to the conductance g and fluctuations of g become suppressed.
However, low-frequency perturbations do not affect the weak localization correction to

the conductance �gwl, equation (50), which is defined as the difference between the averages
over orthogonal and unitary ensembles. Only perturbations at frequencies ω ∼ γesc could
suppress �gwl (see e.g. equation (52)), when the conductance g, equation (15), is no longer
related to the stationary conductance g(ϕ). In this case the suppression of both conductance
fluctuations and the weak localization correction to the conductance are qualitatively similar
and can be interpreted as dephasing.

5. Photovoltaic current

Photovoltaic current averaged over ensemble of random Hamiltonian Ĥ is zero, because there
is no specific direction for the current to flow. However, for each particular configuration of
the quantum dot, a finite current can flow in either direction. To characterize the value of this
current, one can find [47, 61]

varIph = ω2e2

4π2

NlNr

N2
ch

∫ 2π/ω

0

ω2 dt dt ′

π2

∫ ∞

0
γ 2

esc dτ

∫ ∞

τ/2
dθK+(t, t ′, τ, θ)B(t − θ, t ′ − θ, τ ),

(66)

where K+ is defined in equation (56) and

B(t, t ′, τ ) = γ 2
escf

2(τ )

∫ ∞

0
dξ dξ ′D(t, t − ξ, τ )D(t ′, t ′ − ξ ′, τ )


∑

ij

Cij

γesc
ϕ̃i(τ, t)ϕ̃j (τ, t

′)

+ 2


∑

ij

Cij

γesc
ϕ̃i(τ, t − ξ)ϕ̃j (τ, t − ξ)




∑

ij

Cij

γesc
ϕ̃i(τ, t

′ − ξ ′)ϕ̃j (τ, t
′ − ξ ′)






(67)

with ϕ̃i(τ, t) introduced in equation (49). In figure 6 we present only the diagram which
survives at high temperatures and the full set of diagrams contributing to equation (66) can be
found in [47, 61], We emphasize that the photovoltaic current has no symmetry with respect to
inversion of magnetic field, Iph(�)Iph(−�) = 0; this statement in the diagrammatic language
means that there is no counterpart of the diagram in figure 6 that contains the Cooperons (cf
figure 5).
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i V̂i[ϕi(t) ϕi(t
′)]

Figure 6. The diagram representing the contribution to the variance of the photovoltaic current,
varIph, at high temperature T.

Function B(t, t ′, τ ), equation (67), is related to the electron distribution function in the
dot. Particularly, at high temperature T � Th for harmonic perturbations at frequency ω

B(t, t ′, τ ) =
∑
ij

Cij ϕ̇i

(
t + t ′

2

)
ϕ̇j

(
t + t ′

2

)(
T sin(ωτ/2)

ω2 sinh πT τ

)2

, (68)

corresponds to a square of the distribution function F
ph
i , equation (26). Here we introduced

the temperature scale Th according to

Th = ωmax

{√
Cij

γesc

}
. (69)

For a single perturbation at high frequency ω � γesc with strength Cl and at low temperature
T � Th, we can estimate the integrals over ξ and ξ ′ in equation (67) as∫ ∞

0
D(t, t − ξ, 2τ) dξ ≈ γesc

γesc + 2Cl sin2 ωτ
, (70)

and the function B(t, t ′, τ ) acquires extra factors equation (70), which vanish at τ � 1/Th.
Narrowing of the distribution functions in time representation means the broadening of electron
distribution in the energy space. Indeed, energy of an electron in the dot changes due to
the external field. Such changes result in the redistribution of the electrons in the energy
space and the new distribution function becomes wider than that of electrons in the leads at
temperature T.

The new width of the electron distribution function can be estimated from the following
argument. The transitions occur with rate Cl, and electron stays in the dot for 1/γesc time,
so that it experiences of the order Cl/γesc transitions. After each transition electron energy
changes by ±ω, and assuming that its motion in the energy space can be described by a
random walk, we find that on average electron energy changes by Th = ω

√
Cl/γesc, which

is consistent with the estimate equation (70). The above estimate of Th has a meaning only
for strong fields, C � γesc, so that the diffusion picture in energy space is valid. Otherwise,
electrons experience only a few transitions with energy change ω. Note that function in
equation (70) is periodic in τ with period ∼1/ω, i.e. at longer times the electron diffusion is
no longer described by random walk and some structure in the distribution function appears
[94, 100].

For weak harmonic perturbation Cij � γesc, we expand K+ to first order in Cij and
neglect the second term in equation (67), since Th � T . As a result we obtain for the harmonic
perturbation, characterized by two functions ϕ1(t) = cos ωt and ϕ2(t) = cos(ωt + φ):

varIph = e2ω2 NlNr

N2
ch

∫ ∞

0
γesc dθe−2γescθ

∫ +θ

−θ

dτ

(
T sin(ωτ/2)

ω sinh πT τ

)2

× C2
l (2ωθ − sin 2ωθ) + C2

c sin 2ωθ

ω
, (71)
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where the linear, Cl, and circular, Cc, perturbation amplitudes were introduced according to

Cl = C11 + 2C12 cos φ + C22, Cc = 2 sin φ

√
C11C22 − C2

12. (72)

Note that the separation of the variance of the current into circular and linear contributions
corresponds to the classification of the current components introduced in [65], where current
through a microjunction in microwave field with linear and circular polarizations was studied.
In the case of temperature T larger than the escape rate, T � γesc, we have

varIph = π

12

e2ω2

4π2

NlNr

N2
ch

γesc

T

1

γ 2
esc + ω2

(
ω2

γ 2
esc

C2
l + C2

c

)
. (73)

The second term of equation (73) survives the limit ω → 0, thus reproducing the known result
for adiabatic pumping [57, 59]. On the other hand, this term vanishes at high frequency. The
C2

l term is quadratic in frequency at small frequency and tends to a constant at large frequency.
The linear pumping amplitude Cl in the case of two pumps has the form of equation (72),

which implies that the amplitude Cl is just a vector sum of different pumps in the parameter
space. On the other hand the circular amplitude is determined by ‘uncorrelated’ components
of matrices V̂ 1,2 and vanishes if V̂ 2 ∝ V̂ 1.

To describe the variance of the photovoltaic current, we first consider the adiabatic limit,
when parameters Cij have a special form C11 = C22 = C and C12 = 0. In this case the
expression for the variance can be written in the compact form for T � γesc

varIph = e2ω2

24π

NlNr

N2
ch

γesc

T

2C + (γesc − √
γesc(γesc + 4C))√

γesc(γesc + 4C)
. (74)

As temperature drops down to T � γesc = Nchδ1/2π , the variance of Iph saturates to

varIph = e2ω2

π2

NlNr

N2
ch

C2√
γesc(γesc + 4C)3

. (75)

The authors of [59] showed that at strong perturbation the variance of the photovoltaic current in
the adiabatic limit is proportional to the perimeter of the contour integral in the parameter space
figure 1(b); varIph ∝ √

C. This perimeter law is the consequence of the lack of correlation
between distant points of the contour in the parameter space. The total contribution to the
pumped current consists of uncorrelated contributions of the loop and is proportional to the
number of independent contributions

√
C/γesc. In the opposite case of weak perturbation

C � γesc the current Iph is determined by equation (24) (see [57]) and is proportional to
Cc
(
varIph ∝ C2

c

)
. Equations (74) and (75) are consistent with the above arguments for power

dependence of varIph.
When only one perturbation ϕi(t) with power Cl is applied, the photovoltaic current

vanishes in the adiabatic limit. In this case the photovoltaic current is quadratic in frequency
ω for ω � γesc. For weak pumping varIph is determined by equation (73) with Cc = 0
for arbitrary frequency ω. For strong pumping Cl � γesc, but still low-frequency limit
ω2Cl � γ 3

esc, we have

var Iph = 25

288

e2ω2

4π2

NlNr

N2
ch

ω2

γ 2
esc

γesc

T

(
Cl

γesc

)3/2

. (76)

In the limit of high frequencies, T � ω � γesc, the variance of the photovoltaic current is
given by

varIph = e2ω2

24π

NlNr

N2
ch

γesc

T

Cl + γesc − √
γesc(γesc + 2Cl)√

γesc(γesc + 2Cl)
. (77)

In the limit of strong pumping this expression has the
√

Cl asymptotic behaviour.
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The results for varIph at finite frequency have the following interpretation. Based on
equation (21), we can represent the photovoltaic current in the form similar to equation (22),
where the contour of integration is considered in the phase space. The phase space includes
both parameters ϕi(t) and their time derivatives [61], as follows from equation (21). At weak
perturbation with a single parameter ϕ1(t) = cos ωt , the contour is an ellipse with semi-axes
proportional to

√
Cl and ω

√
Cl; then Iph ∝ (eω)ωCl and varIph is consistent with equation (73)

at ω � γesc. In the limit of strong perturbation at low frequency ω2Cl � γ 3
esc, the contour

in phase plane is long along the ϕ1 axis but narrow in the ϕ̇1 direction. The variance of the
photovoltaic current is determined by a sum of independent contributions from pairs of the
contour along the ϕ axis, the number of these pairs can be estimated as

√
Cl/γesc. Each pair

consists of two adjacent pieces of the contour shifted with respect to each other along ϕ̇1(t) axis
and contributes as ω

√
Cl to the total current. As a result, we obtain var Iph ∝ (eω)2ω2C

3/2
l .

Finally, if the amplitude of the field C or the frequency ω increases further, ω2Cl � γ 3
esc,

the contour does not have adjacent parts and each part of the contour gives an independent
contribution. Since the number of these parts is

√
Cl/γesc, the variance of the photovoltaic

current is proportional to (eω)2
√

C (see equation (77)).
As frequency ω and power increase further, the heating effects become important. At

Th � T , the variance of the photovoltaic current can be roughly estimated if the electron
temperature T in the leads is replaced by Th. Particularly, from equation (77) we obtain the
characteristic scale for varIph:

varIph ∼ e2ω2

4π2

NlNr

N2
ch

γesc

ω
. (78)

A numerical analysis [83] shows that in fact at Cl � γesc, the variance of the photovoltaic
current on the perturbation power has a very weak (log-like) dependence on Cl, with typical
of value varIph consistent with the estimate of equation (78).

The heating effects manifest themselves in the noise of the photovoltaic current as well
[77]. In the limit of strong perturbation Cl � γesc at high frequency ω � γesc the ensemble
averaged value of SP, equation (32), is

SP ∝ gclTh. (79)

The noise of the photovoltaic current has a form similar to the expression for the Nyquist–
Johnson noise, see equation (31): the current noise correlation function is determined by the
conductance of the dot gcl, and the effective electron temperature. Due to the heating by a
strong perturbation, the electron distribution function is broadened and the new energy scale
for the electron distribution function is given by Th, see equation (79). Thus, the noise of the
photovoltaic current averaged over the ensemble has a similar origin with the Nyquist–Johnson
noise and is determined by thermal fluctuations of electrons in the dot out of equilibrium.

6. Conclusions

In summary, we reviewed the random matrix description of electron transport through an open
quantum dot, subject to time-dependent perturbations. We expressed the dc current through
the dot in terms of the scattering matrices, and considered such components of the current as
the photovoltaic current, independent from the bias voltage, and the linear in the bias current,
characterized by the conductance. The scattering matrices are calculated in terms of time-
dependent Hamiltonian that belongs to a Gaussian ensemble of random matrices. We then
presented the diagram technique to perform ensemble averaging and applied this technique to
calculate different statistical properties of the electron transport through the dot.
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The main results can be summarized as follows. The weak localization correction
to the conductance and conductance fluctuations are both suppressed by time-dependent
perturbation. However, the suppression has different parametric dependence on perturbation
frequency. The photovoltaic current can be represented as a sum of circular and linear
terms. These terms have different frequency dependence: the circular term dominates at low
frequencies and represents the adiabatic charge pumping, while the linear term dominates at
high frequencies. The photovoltaic current and its noise are determined by the actual width of
the electron distribution function in the dot, on the other hand, the variance of the conductance
fluctuations is determined by electron temperature in the leads. These results are in qualitative
agreement with experiments, described in [10, 82].

We described calculations using the Hamiltonian approach to the statistical description
of the electron transport, a detailed description of the scattering matrix approach for time-
dependent system can be found in [47], where the same results were obtained.

In this paper we considered the electron system neglecting the interaction effects and
assumed spin degeneracy. The effect of electron–electron interaction can be disregarded
only in the limit of the large number of open channels, but as the number of open channels
decreases, the interaction effects become more important [84, 86, 87, 101]. The interplay of
the interaction and time-dependent perturbation was addressed in [102, 103].

In semiconductor quantum dots in the absence of magnetic field electron spin states are
nearly degenerate. However, if magnetic field is applied, the spin degeneracy is lifted and
currents of electrons with opposite spin orientations are not identical. In this case a spin current
can be generated by time-dependent perturbation, similar to the photovoltaic charge current
[104]; this effect was studied experimentally in [105]. Another modification of the system,
considered in the present paper, is a quantum dot connected to superconducting leads and was
studied theoretically in [106, 107], the experimental realization of such a system remains a
challenging task.
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Appendix A

We denote the wave function of electrons in channel α by ψα(x, t) with x < 0 for incoming
electrons and x > 0 for outgoing electrons (see figure 1(a)). The boundary x = 0 is described
by a superposition of the incoming and outgoing electron states and we denote it by ψα(0, t).
The wave function of electrons in the dot is denoted by ψi(t).

We introduce the matrix Green function

Ĝαβ(t, t ′, x, x ′) =
(
G(R)

αβ (t, t ′, x, x ′) G(K)
αβ (t, t ′, x, x ′)

0 G(A)
αβ (t, t ′, x, x ′)

)
, (A.1)

which is defined in terms of the retarded, advanced and Keldysh components as

G(R)
αβ (t, t ′, x, x ′) = −i�(t − t ′)

〈{
ψα(x, t);ψ

†
β(x ′, t ′)

}〉
,

G(A)
αβ (t, t ′, x, x ′) = i�(t ′ − t)

〈{
ψα(x, t);ψ

†
β(x ′, t ′)

}〉
,
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G(K)
αβ (t, t ′, x, x ′) = −i

〈[
ψα(x, t);ψ

†
β(x ′, t ′)

]〉
,

where [A;B] = AB − BA and {A;B} = AB + BA. The similar expressions can be written
down for Ĝiα(t, t ′, x ′) Green function, with ψα(x, t) replaced by ψi(t).

For non-interacting electrons, moving towards the dot (x; x ′ < 0), the Green function is

Gαβ(t, t ′, x, x ′) =
(

GR
αβ(t − t ′, x − x ′) GK

αβ(t − t ′, x − x ′)

0 GA
αβ(t − t ′, x − x ′)

)
, (A.2)

where

GR
αβ(t, x) = i�(t)δαβδ(vF t − x), (A.3)

GA
αβ(t, x) = −i�(−t)δαβδ(vF t − x), (A.4)

GK
αβ(ε, x) = f̃ α(ε)

(
GR

αβ(ε, x) − GA
αβ(ε, x)

)
, (A.5)

and f (ε) is the distribution function of electrons in channel α. If incoming electrons are in
equilibrium at temperature T,

f̃ α(ε) = tanh
ε − eVα

2T
, (A.6)

with Vα being the voltage applied to the reservoir connected to the dot by channel α.
The equations of motion for the Green functions Ĝαβ(t, t ′, x, x ′) and Ĝjα(t, t ′, x ′) are

i

[
∂

∂t
− vF

∂

∂x

]
Ĝαβ(t, t ′, x, x ′) = δ(x)WαiĜiβ(t, t ′, x ′) + δ(t − t ′)δ(x − x ′)1̂, (A.7)[

i
∂

∂t
− Hij (t)

]
Ĝjα(t, t ′, x ′) = W

†
iβ Ĝβα(t, t ′, 0, x ′). (A.8)

Due to causality principle, GA
αβ(t, t ′, 0, x ′) ≡ 0 for x ′ < 0. This observation significantly

simplifies further calculations. Indeed, we can represent the Keldysh component of the Green
function in the left-hand side of equation (A.8) in the form

G(K)
iα (t, t ′, x ′) =

∫
dt1

[
1

i∂/∂t − Ĥ (t)

]
ij

(t, t1)W
†
jβGαβ(t1, t

′, 0, x ′). (A.9)

The corresponding advance component is zero. Here 1/(i∂/∂t − Ĥ (t)) is the retarded
component of the electron Green function in the dot. This definition is different from that
given in the main part of the paper (see equation (11). The latter will appear naturally in the
end of this calculation with an additional term ∼ W †W (see equation (13)), describing escape
of electrons from the dot through the leads. We represent equation (A.7) in the form

G(K)
αβ (t, t ′, x, x ′) = GK

αβ(t − t ′, x − x ′) +
∫

dt1 dt2G
R
αγ (t − t1, x)

×
[
W

1

i∂/∂t − Ĥ (t)
W †

]
γ δ

(t1, t2)G(K)
δβ (t2, t

′, 0, x ′), (A.10)

take the limit x = 0 and, using GR
αβ(t − t ′, 0) from equation (A.3), obtain for x ′ < 0

G(K)
αβ (t, t ′, 0, x ′) =

∫
dt1

[
1 − Ŵ

iπν

i∂/∂t − Ĥ (t)
Ŵ †

]−1

αδ

(t, t1)G
(K)
δβ (t1, t

′, 0, x ′). (A.11)

Substituting this expression into equation (A.10) and taking x = +|δ| → 0, we find

G(K)
αβ (t, t ′, +|δ|, x ′) =

∫
dt1Sαγ (t, t1)G

K
γβ(t1 − t ′,−x ′), x ′ < 0, (A.12)

where the scattering matrix Sαβ(t, t ′) is defined by equation (12).
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Equation (A.12) is valid for x ′ < 0. We have to repeat the procedure described above
to calculate the electron Green function in the leads for x ′ > 0. Since the equations which
determine evolution of the Green function from x ′ < 0 to x ′ > 0 are conjugated to those for
x, we obtain

G(K)
αβ (t, t ′, +|δ|, +|δ|) =

∫ ∫
dt1 dt2Sαγ (t, t1)G

K
γδ(t1 − t2, 0)S†

δβ(t2, t
′). (A.13)

The currents in the left (right) leads are given by

〈Il(r)(t)〉 = evF

∑
α∈L(R)

(
G(K)

αα (t, t, +|δ|, +|δ|) − G(K)
αα (t, t,−|δ|,−|δ|)), (A.14)

where α = 1, . . . , Nl for left lead and α = Nl + 1, . . . , Nch for right lead; the coordinate
δ is in the lead just before the contact with the dot: δ > 0 and δ → 0. The function
G(K)

αα (t, t,−|δ|,−|δ|) is taken for incoming electrons and is given by equation (A.5) and
consequently,

G(K)
αα (t, t,−|δ|,−|δ|) = f (+0), f (t) =

∫ +∞

−∞
eiωt f̃ (ω)

dω

2π
. (A.15)

The total dc current from the dot should be zero 〈Il〉 + 〈Ir〉 = 0 to ensure no charge
accumulation on the dot, where 〈Il(r)〉 = ∫ τo

0 〈Il(r)(t)〉 dt/τo. Therefore, we can rewrite the
expression for dc current through the dot as

I (t) = Nr〈Il〉 − Nl〈Ir〉
Nch

= 〈Il〉 = −〈Ir〉. (A.16)

Substituting equations (A.13) and (A.15) into equations (A.14) and using equation (A.16) we
obtain equation (9).

Appendix B

In this appendix we derive equation (29) for the current noise correlation function through a
quantum dot. The quantum mechanical operator of the current through left (right) lead is

Il(r)(t) = evF

∑
α∈L(R)

(
ψ †

α(t, +δ)ψα(t, +δ) − ψ †
α(t,−δ)ψα(t,−δ)

)
(B.1)

with ψα(t,±δ) being the operator for outgoing (+δ) or incoming (−δ) electrons through
channel α (cf to equation (A.14)).

Substituting the expression for the current operator, equation (B.1) into equation (28) and
using the charge conservation in the dot on time τo � 1/ω, we obtain the following expression
for the current correlation function (below δ → 0, but δ > 0):

S = e2v2
F

∫ τo

0
dt dt ′(tr{
̂Ĝ<(t ′, t, +δ, +δ)
̂Ĝ>(t, t ′, +δ, +δ)}
− tr{
̂Ĝ<(t ′, t, +δ,−δ)
̂Ĝ>(t, t ′,−δ, +δ)}
− tr{
̂Ĝ<(t ′, t,−δ, +δ)
̂Ĝ>(t, t ′, +δ,−δ)}
+ tr{
̂Ĝ<(t ′, t,−δ,−δ)
̂Ĝ>(t, t ′,−δ,−δ)}). (B.2)

Here we introduced the electron Green’s functions in the leads according to the following
definitions (for a review of the Keldysh Green function formalism see [25]):

G<
αβ(t, t ′, x, x ′) = i

〈
ψ

†
β(t ′, x ′)ψα(t, x)

〉
, G>

αβ(t, t ′, x, x ′) = −i
〈
ψα(t, x)ψ

†
β(t ′, x ′)

〉
.

(B.3)
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The Green’s functions Ĝ<,> can be written in terms of the retarded, advanced and Keldysh
Green functions:

Ĝ<(t, t ′, x, x ′) = 1
2 (Ĝ(K)(t, t ′, x, x ′) − Ĝ(R)(t, t ′, x, x ′) + Ĝ(A)(t, t ′, x, x ′)), (B.4)

Ĝ>(t, t ′, x, x ′) = 1
2 (Ĝ(K)(t, t ′, x, x ′) + Ĝ(R)(t, t ′, x, x ′) − Ĝ(A)(t, t ′, x, x ′)). (B.5)

The next step is to represent the Green functions as a product of incoming electron Green’s
functions, equations (A.2)–(A.5), and the scattering matrix, equation (12). The procedure is
similar to one described in appendix A. We have the following relations:

Ĝ(R)(t, t ′,−δ, +δ) = Ĝ(A)(t, t ′, +δ,−δ) = 0 (B.6)
Ĝ(R,A)(t, t ′, +δ, +δ) = Ĝ(R,A)(t − t ′, 0), (B.7)

Ĝ(K)(t, t ′, +δ, +δ) =
∫

Ŝ(t, t1)Ĝ
(K)(t1 − t2, 0)Ŝ†(t2, t

′) dt1 dt2, (B.8)

Ĝ(R,K)(t, t ′, +δ,−δ) =
∫

Ŝ(t, t1)Ĝ
(R,K)(t1 − t ′, +δ) dt1, (B.9)

Ĝ(A,K)(t, t ′,−δ, +δ) =
∫

Ĝ(A,K)(t − t1,−δ)Ŝ†(t1, t
′) dt1. (B.10)

Now the derivation of equation (29) reduces to simple algebraic calculations. With the
help of equations (B.4) and (B.5) we rewrite equation (B.2) in terms of the retarded, advanced
and Keldysh components of the Green function. Then we represent these components as
a product of scattering matrices and the Green functions of the incoming electrons, using
equations (B.6)–(B.10). The result is given by equation (29).
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